Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films
نویسندگان
چکیده
منابع مشابه
Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films
We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O₂ containing working gas atmosphere of (N₂ + O₂) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO₂) ~10% t...
متن کاملPhysical Properties of Reactively Sputter-Deposited C-N Thin Films
This work aims to prepare and study amorphous carbon nitride (CNx) films. Films were deposited by reactive magnetron radiofrequency (RF) sputtering from graphite target in argon and nitrogen mixture discharge at room temperature. The ratio of the gas flow rate was varied from 0.1 to 1. Deposited films were found to be amorphous. Highest Nitrogen concentration achieved was 42 atomic percent whic...
متن کاملGrowth, structure and stability of sputter-deposited MoS2 thin films
Molybdenum disulphide (MoS2) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are cru...
متن کاملSputter-deposited Sma Thin Films: Properties and Applications
Shape memory alloy (SMA) thin films formed by sputter deposition have attracted considerable attention in the last decade. Current intensive research demonstrated that thin films' unique fine microstructure is responsible for superior shape memory characteristics in films, compared to that of bulk materials. Simultaneously, much effort has been taken in the development and fabrication of microd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomaterials
سال: 2013
ISSN: 2079-4991
DOI: 10.3390/nano3030486